你好,我是景霄。
前面的课程,我们学习了Python中的列表和元组,了解了他们的基本操作和性能比较。这节课,我们再来学习两个同样很常见并且很有用的数据结构:字典(dict)和集合(set)。字典和集合在Python被广泛使用,并且性能进行了高度优化,其重要性不言而喻。
字典和集合基础
那究竟什么是字典,什么是集合呢?字典是一系列由键(key)和值(value)配对组成的元素的集合,在Python3.7+,字典被确定为有序(注意:在3.6中,字典有序是一个implementation detail,在3.7才正式成为语言特性,因此3.6中无法100%确保其有序性),而3.6之前是无序的,其长度大小可变,元素可以任意地删减和改变。
相比于列表和元组,字典的性能更优,特别是对于查找、添加和删除操作,字典都能在常数时间复杂度内完成。
而集合和字典基本相同,唯一的区别,就是集合没有键和值的配对,是一系列无序的、唯一的元素组合。
首先我们来看字典和集合的创建,通常有下面这几种方式:
d1 = {'name': 'jason', 'age': 20, 'gender': 'male'}
d2 = dict({'name': 'jason', 'age': 20, 'gender': 'male'})
d3 = dict([('name', 'jason'), ('age', 20), ('gender', 'male')])
d4 = dict(name='jason', age=20, gender='male')
d1 == d2 == d3 ==d4
True
s1 = {1, 2, 3}
s2 = set([1, 2, 3])
s1 == s2
True
这里注意,Python中字典和集合,无论是键还是值,都可以是混合类型。比如下面这个例子,我创建了一个元素为1,'hello',5.0的集合:
s = {1, 'hello', 5.0}
再来看元素访问的问题。字典访问可以直接索引键,如果不存在,就会抛出异常:
d = {'name': 'jason', 'age': 20}
d['name']
'jason'
d['location']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'location'
也可以使用get(key, default)函数来进行索引。如果键不存在,调用get()函数可以返回一个默认值。比如下面这个示例,返回了'null'。
d = {'name': 'jason', 'age': 20}
d.get('name')
'jason'
d.get('location', 'null')
'null'
说完了字典的访问,我们再来看集合。
首先我要强调的是,集合并不支持索引操作,因为集合本质上是一个哈希表,和列表不一样。所以,下面这样的操作是错误的,Python会抛出异常:
s = {1, 2, 3}
s[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing
想要判断一个元素在不在字典或集合内,我们可以用value in dict/set 来判断。
s = {1, 2, 3}
1 in s
True
10 in s
False
d = {'name': 'jason', 'age': 20}
'name' in d
True
'location' in d
False
当然,除了创建和访问,字典和集合也同样支持增加、删除、更新等操作。
d = {'name': 'jason', 'age': 20}
d['gender'] = 'male' # 增加元素对'gender': 'male'
d['dob'] = '1999-02-01' # 增加元素对'dob': '1999-02-01'
d
{'name': 'jason', 'age': 20, 'gender': 'male', 'dob': '1999-02-01'}
d['dob'] = '1998-01-01' # 更新键'dob'对应的值
d.pop('dob') # 删除键为'dob'的元素对
'1998-01-01'
d
{'name': 'jason', 'age': 20, 'gender': 'male'}
s = {1, 2, 3}
s.add(4) # 增加元素4到集合
s
{1, 2, 3, 4}
s.remove(4) # 从集合中删除元素4
s
{1, 2, 3}
不过要注意,集合的pop()操作是删除集合中最后一个元素,可是集合本身是无序的,你无法知道会删除哪个元素,因此这个操作得谨慎使用。
实际应用中,很多情况下,我们需要对字典或集合进行排序,比如,取出值最大的50对。
对于字典,我们通常会根据键或值,进行升序或降序排序:
d = {'b': 1, 'a': 2, 'c': 10}
d_sorted_by_key = sorted(d.items(), key=lambda x: x[0]) # 根据字典键的升序排序
d_sorted_by_value = sorted(d.items(), key=lambda x: x[1]) # 根据字典值的升序排序
d_sorted_by_key
[('a', 2), ('b', 1), ('c', 10)]
d_sorted_by_value
[('b', 1), ('a', 2), ('c', 10)]
这里返回了一个列表。列表中的每个元素,是由原字典的键和值组成的元组。
而对于集合,其排序和前面讲过的列表、元组很类似,直接调用sorted(set)即可,结果会返回一个排好序的列表。
s = {3, 4, 2, 1}
sorted(s) # 对集合的元素进行升序排序
[1, 2, 3, 4]
字典和集合性能
文章开头我就说到了,字典和集合是进行过性能高度优化的数据结构,特别是对于查找、添加和删除操作。那接下来,我们就来看看,它们在具体场景下的性能表现,以及与列表等其他数据结构的对比。
比如电商企业的后台,存储了每件产品的ID、名称和价格。现在的需求是,给定某件商品的ID,我们要找出其价格。
如果我们用列表来存储这些数据结构,并进行查找,相应的代码如下:
def find_product_price(products, product_id):
for id, price in products:
if id == product_id:
return price
return None
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150)
]
print('The price of product 432314553 is {}'.format(find_product_price(products, 432314553)))
# 输出
The price of product 432314553 is 30
假设列表有n个元素,而查找的过程要遍历列表,那么时间复杂度就为O(n)。即使我们先对列表进行排序,然后使用二分查找,也会需要O(logn)的时间复杂度,更何况,列表的排序还需要O(nlogn)的时间。
但如果我们用字典来存储这些数据,那么查找就会非常便捷高效,只需O(1)的时间复杂度就可以完成。原因也很简单,刚刚提到过的,字典的内部组成是一张哈希表,你可以直接通过键的哈希值,找到其对应的值。
products = {
143121312: 100,
432314553: 30,
32421912367: 150
}
print('The price of product 432314553 is {}'.format(products[432314553]))
# 输出
The price of product 432314553 is 30
类似的,现在需求变成,要找出这些商品有多少种不同的价格。我们还用同样的方法来比较一下。
如果还是选择使用列表,对应的代码如下,其中,A和B是两层循环。同样假设原始列表有n个元素,那么,在最差情况下,需要O(n^2)的时间复杂度。
# list version
def find_unique_price_using_list(products):
unique_price_list = []
for _, price in products: # A
if price not in unique_price_list: #B
unique_price_list.append(price)
return len(unique_price_list)
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150),
(937153201, 30)
]
print('number of unique price is: {}'.format(find_unique_price_using_list(products)))
# 输出
number of unique price is: 3
但如果我们选择使用集合这个数据结构,由于集合是高度优化的哈希表,里面元素不能重复,并且其添加和查找操作只需O(1)的复杂度,那么,总的时间复杂度就只有O(n)。
# set version
def find_unique_price_using_set(products):
unique_price_set = set()
for _, price in products:
unique_price_set.add(price)
return len(unique_price_set)
products = [
(143121312, 100),
(432314553, 30),
(32421912367, 150),
(937153201, 30)
]
print('number of unique price is: {}'.format(find_unique_price_using_set(products)))
# 输出
number of unique price is: 3
可能你对这些时间复杂度没有直观的认识,我可以举一个实际工作场景中的例子,让你来感受一下。
下面的代码,初始化了含有100,000个元素的产品,并分别计算了使用列表和集合来统计产品价格数量的运行时间:
import time
id = [x for x in range(0, 100000)]
price = [x for x in range(200000, 300000)]
products = list(zip(id, price))
# 计算列表版本的时间
start_using_list = time.perf_counter()
find_unique_price_using_list(products)
end_using_list = time.perf_counter()
print("time elapse using list: {}".format(end_using_list - start_using_list))
## 输出
time elapse using list: 41.61519479751587
# 计算集合版本的时间
start_using_set = time.perf_counter()
find_unique_price_using_set(products)
end_using_set = time.perf_counter()
print("time elapse using set: {}".format(end_using_set - start_using_set))
# 输出
time elapse using set: 0.008238077163696289
你可以看到,仅仅十万的数据量,两者的速度差异就如此之大。事实上,大型企业的后台数据往往有上亿乃至十亿数量级,如果使用了不合适的数据结构,就很容易造成服务器的崩溃,不但影响用户体验,并且会给公司带来巨大的财产损失。
字典和集合的工作原理
我们通过举例以及与列表的对比,看到了字典和集合操作的高效性。不过,字典和集合为什么能够如此高效,特别是查找、插入和删除操作?
这当然和字典、集合内部的数据结构密不可分。不同于其他数据结构,字典和集合的内部结构都是一张哈希表。
-
对于字典而言,这张表存储了哈希值(hash)、键和值这3个元素。
-
而对集合来说,区别就是哈希表内没有键和值的配对,只有单一的元素了。
我们来看,老版本Python的哈希表结构如下所示:
--+-------------------------------+
| 哈希值(hash) 键(key) 值(value)
--+-------------------------------+
0 | hash0 key0 value0
--+-------------------------------+
1 | hash1 key1 value1
--+-------------------------------+
2 | hash2 key2 value2
--+-------------------------------+
. | ...
__+_______________________________+
不难想象,随着哈希表的扩张,它会变得越来越稀疏。举个例子,比如我有这样一个字典:
{'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'}
那么它会存储为类似下面的形式:
entries = [
['--', '--', '--']
[-230273521, 'dob', '1999-01-01'],
['--', '--', '--'],
['--', '--', '--'],
[1231236123, 'name', 'mike'],
['--', '--', '--'],
[9371539127, 'gender', 'male']
]
这样的设计结构显然非常浪费存储空间。为了提高存储空间的利用率,现在的哈希表除了字典本身的结构,会把索引和哈希值、键、值单独分开,也就是下面这样新的结构:
Indices
----------------------------------------------------
None | index | None | None | index | None | index ...
----------------------------------------------------
Entries
--------------------
hash0 key0 value0
---------------------
hash1 key1 value1
---------------------
hash2 key2 value2
---------------------
...
---------------------
那么,刚刚的这个例子,在新的哈希表结构下的存储形式,就会变成下面这样:
indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]
我们可以很清晰地看到,空间利用率得到很大的提高。
清楚了具体的设计结构,我们接着来看这几个操作的工作原理。
插入操作
每次向字典或集合插入一个元素时,Python会首先计算键的哈希值(hash(key)),再和 mask = PyDicMinSize - 1做与操作,计算这个元素应该插入哈希表的位置index = hash(key) & mask。如果哈希表中此位置是空的,那么这个元素就会被插入其中。
而如果此位置已被占用,Python便会比较两个元素的哈希值和键是否相等。
-
若两者都相等,则表明这个元素已经存在,如果值不同,则更新值。
-
若两者中有一个不相等,这种情况我们通常称为哈希冲突(hash collision),意思是两个元素的键不相等,但是哈希值相等。这种情况下,Python便会继续寻找表中空余的位置,直到找到位置为止。
值得一提的是,通常来说,遇到这种情况,最简单的方式是线性寻找,即从这个位置开始,挨个往后寻找空位。当然,Python内部对此进行了优化(这一点无需深入了解,你有兴趣可以查看源码,我就不再赘述),让这个步骤更加高效。
查找操作
和前面的插入操作类似,Python会根据哈希值,找到其应该处于的位置;然后,比较哈希表这个位置中元素的哈希值和键,与需要查找的元素是否相等。如果相等,则直接返回;如果不等,则继续查找,直到找到空位或者抛出异常为止。
删除操作
对于删除操作,Python会暂时对这个位置的元素,赋于一个特殊的值,等到重新调整哈希表的大小时,再将其删除。
不难理解,哈希冲突的发生,往往会降低字典和集合操作的速度。因此,为了保证其高效性,字典和集合内的哈希表,通常会保证其至少留有1/3的剩余空间。随着元素的不停插入,当剩余空间小于1/3时,Python会重新获取更大的内存空间,扩充哈希表。不过,这种情况下,表内所有的元素位置都会被重新排放。
虽然哈希冲突和哈希表大小的调整,都会导致速度减缓,但是这种情况发生的次数极少。所以,平均情况下,这仍能保证插入、查找和删除的时间复杂度为O(1)。
总结
这节课,我们一起学习了字典和集合的基本操作,并对它们的高性能和内部存储结构进行了讲解。
字典在Python3.7+是有序的数据结构,而集合是无序的,其内部的哈希表存储结构,保证了其查找、插入、删除操作的高效性。所以,字典和集合通常运用在对元素的高效查找、去重等场景。
思考题
1. 下面初始化字典的方式,哪一种更高效?
# Option A
d = {'name': 'jason', 'age': 20, 'gender': 'male'}
# Option B
d = dict({'name': 'jason', 'age': 20, 'gender': 'male'})
2. 字典的键可以是一个列表吗?下面这段代码中,字典的初始化是否正确呢?如果不正确,可以说出你的原因吗?
d = {'name': 'jason', ['education']: ['Tsinghua University', 'Stanford University']}
欢迎留言和我分享,也欢迎你把这篇文章分享给你的同事、朋友。
精选留言
2019-05-17 05:57:22
第一种方法更快,原因感觉上是和之前一样,就是不需要去调用相关的函数,而且像老师说的那样 {} 应该是关键字,内部会去直接调用底层C写好的代码
思考题 2:
用列表作为 Key 在这里是不被允许的,因为列表是一个动态变化的数据结构,字典当中的 key 要求是不可变的,原因也很好理解,key 首先是不重复的,如果 Key 是可以变化的话,那么随着 Key 的变化,这里就有可能就会有重复的 Key,那么这就和字典的定义相违背;如果把这里的列表换成之前我们讲过的元组是可以的,因为元组不可变
2019-05-17 06:05:36
2.字典的键值,需要不可变,而列表是动态的,可变的。可以改为元组
2019-05-18 11:17:23
1. 为了提高哈希表的空间利用率,于是使用了Indices、Entries结构分开存储(index)和(hashcode、key、value),这里的index是否就是Entries列表的下标?
2、如果问题1成立,通过hash(key) & (PyDicMinSize - 1)计算出来的是否为Indices列表的下标?
3、如果问题2成立,PyDicMinSize是什么?为什么要使用hashcode与(PyDicMinSize - 1)做与运算,相比起直接用hashcode作为Indices列表的下标会有什么好处?
4、如果问题2成立,在往字典插入新元素的时候,通过hash(key) & mask计算出Indices的下标,如果Indices对应的元素位置值为None,则是否会将其值(index)修改为len(Entries),然后在Entries列表追加一行新的记录(hashcode,key,value)?
5、如果问题2成立,在往字典插入新元素的时候,通过hash(key) & mask计算出Indices的下标,如果Indices对应的元素位置已经有值,则会跟Entries表中对应位置的key进行hash比较及相等比较来决定是进行value的更新处理还是hash冲突处理?
2020-01-01 16:56:28
旧哈希表存储示意图:
entries = [
['--', '--', '--']
[-230273521, 'dob', '1999-01-01'],
['--', '--', '--'],
['--', '--', '--'],
[1231236123, 'name', 'mike'],
['--', '--', '--'],
[9371539127, 'gender', 'male']
]
旧的哈希表的寻址过程是这样的:通过key计算哈希值,然后再通过哈希值计算数组的索引,然后通过索引以O(1)时间的复杂度访问到entries里面存储的哈希值、key和value;
但是旧的哈希表存储结构有个问题,就是为了保证通过计算所得的索引能够正确的访问到地址,需要给entries分配连续的存储空间,这样一来,中间空闲的空间就太多了,造成了空间浪费。
新哈希表存储示意图:
indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]
再来看新的哈希表存储结构,其寻址方式是这样的:通过key计算哈希值,然后再通过哈希值计算索引,但是这个索引不是entries的索引了,而是新建的indices数组的索引,需要先通过计算出的这个索引在indices中寻址来取到entries中对应内容的索引,然后通过新获取到的索引值再去entries中寻址获取最终需要的内容。
新的哈希存储结构多加了一个转换数组来存储entries数组的索引,这使得entries数组中的条目可以紧密排列,其思想就是将整条数据内容空闲的空间转换为单个索引空闲的空间,确实很划算,而且每次查询也只是多了一次在indices中的O(1)复杂度的寻址,查询性能影响不大。
不知理解的是否正确,请老师指正。
2019-05-17 10:31:56
1. double star
>>> d1 = {'name': 'jason', 'age': 20, 'gender': 'male'}
>>> d2 = {'hobby': 'swim', **d1}
2. update 函数:
>>> d3 = {'hobby': 'swim'}
>>> d3.update(d1)
我们可以看到这两种方式得到的字典是满足插入有序的:
>>> d3
{'hobby': 'swim', 'name': 'jason', 'age': 20, 'gender': 'male'}
在我的电脑上 第一种方式的性能要好一些。
double star:
229 ns ± 22.8 ns per loop
update:
337 ns ± 49.7 ns per loop
2019-05-17 23:31:16
1 0 LOAD_GLOBAL 0 (dict)
3 CALL_FUNCTION 0 (0 positional, 0 keyword pair)
6 RETURN_VALUE
>>> dis.dis(lambda : {})
1 0 BUILD_MAP 0
3 RETURN_VALUE
>>> %timeit dict()
133 ns ± 2.95 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
>>> %timeit {}
74.6 ns ± 3.07 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
{}, [], () 都比 dict(), list(), tuple() 初始化列表的性能要好,因为后者需要函数调用消耗了更多的时间。
2019-05-17 08:18:00
2019-05-29 23:46:43
| 哈希值 (hash) 键 (key) 值 (value)
--+-------------------------------+
0 | hash0 key0 value0
--+-------------------------------+
1 | hash1 key1 value1
--+-------------------------------+
2 | hash2 key2 value2
--+-------------------------------+
. | ...
__+_______________________________+
第一种数据结构,如何可以o(1)的查找一个key?
没有索引啊
这篇文章感觉写的不好,例子没有讲透
稀疏一定浪费吗,里面没有值的话能占用多少空间
我理解耗费空间的应该是k v的存储吧
2019-05-17 09:01:24
2. 列表不可以作为key,因为列表是可变类型,可变类型不可hash。
问题:为什么在旧哈希表中元素会越来越稀?
2019-11-14 12:40:19
2019-06-20 13:56:15
>>> import dis
>>> def f1(): return {'1':1}
...
>>> def f2(): return dict({'1':1})
...
>>> dis.dis(f1)
1 0 LOAD_CONST 1 ('1')
2 LOAD_CONST 2 (1)
4 BUILD_MAP 1
6 RETURN_VALUE
>>> dis.dis(f2)
1 0 LOAD_GLOBAL 0 (dict)
2 LOAD_CONST 1 ('1')
4 LOAD_CONST 2 (1)
6 BUILD_MAP 1
8 CALL_FUNCTION 1
10 RETURN_VALUE
2. 不可以, 列表是可变的, 但是对hash表来说, 如果键值是可变的, 那么插入以及删除的位置都变成不确定的. 另外哈希冲突的概率也大大增加
2019-05-17 22:44:16
2019-05-17 15:04:44
作业中初始化dict,key不能使用可变类型吧,value可以使任意对象。
2019-05-17 12:40:19
后面例子中解释的原因没看懂,能详细说说吗?
2019-05-17 03:45:35
2019-05-17 19:09:16
mask = PyDicMinSize -1
index = hash(key) & mask
能否有个例子,想详细了解一下细节
2019-05-17 09:45:40
2021-03-19 16:51:37
indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]
我的问题主要还是怎么查找到entries实际的值,以及indices是如何与entries关联起来的?
经过下面同学提供的帖子https://zhuanlan.zhihu.com/p/73426505
基本可以浓缩称这样的代码
entries[indices[hash(key) % mask]]
2019-10-30 09:17:02
2019-06-10 16:28:15
如:a = 1, 2, 3
等价于a = (1, 2, 3)