你好,我是倪朋飞。
前几节我们一起学习了 CPU 的性能原理和优化方法,接下来,我们将进入另一个板块——内存。
同 CPU 管理一样,内存管理也是操作系统最核心的功能之一。内存主要用来存储系统和应用程序的指令、数据、缓存等。
那么,Linux 到底是怎么管理内存的呢?今天,我就来带你一起来看看这个问题。
内存映射
说到内存,你能说出你现在用的这台计算机内存有多大吗?我估计你记得很清楚,因为这是我们购买时,首先考虑的一个重要参数,比方说,我的笔记本电脑内存就是 8GB 的 。
我们通常所说的内存容量,就像我刚刚提到的8GB,其实指的是物理内存。物理内存也称为主存,大多数计算机用的主存都是动态随机访问内存(DRAM)。只有内核才可以直接访问物理内存。那么,进程要访问内存时,该怎么办呢?
Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。
虚拟地址空间的内部又被分为内核空间和用户空间两部分,不同字长(也就是单个CPU指令可以处理数据的最大长度)的处理器,地址空间的范围也不同。比如最常见的 32 位和 64 位系统,我画了两张图来分别表示它们的虚拟地址空间,如下所示:

通过这里可以看出,32位系统的内核空间占用 1G,位于最高处,剩下的3G是用户空间。而 64 位系统的内核空间和用户空间都是 128T,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。
还记得进程的用户态和内核态吗?进程在用户态时,只能访问用户空间内存;只有进入内核态后,才可以访问内核空间内存。虽然每个进程的地址空间都包含了内核空间,但这些内核空间,其实关联的都是相同的物理内存。这样,进程切换到内核态后,就可以很方便地访问内核空间内存。
既然每个进程都有一个这么大的地址空间,那么所有进程的虚拟内存加起来,自然要比实际的物理内存大得多。所以,并不是所有的虚拟内存都会分配物理内存,只有那些实际使用的虚拟内存才分配物理内存,并且分配后的物理内存,是通过内存映射来管理的。
内存映射,其实就是将虚拟内存地址映射到物理内存地址。为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系,如下图所示:

页表实际上存储在 CPU 的内存管理单元 MMU中,这样,正常情况下,处理器就可以直接通过硬件,找出要访问的内存。
而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。
另外,我在 CPU 上下文切换的文章中曾经提到, TLB(Translation Lookaside Buffer,转译后备缓冲器)会影响 CPU 的内存访问性能,在这里其实就可以得到解释。
TLB 其实就是 MMU 中页表的高速缓存。由于进程的虚拟地址空间是独立的,而 TLB 的访问速度又比 MMU 快得多,所以,通过减少进程的上下文切换,减少TLB的刷新次数,就可以提高TLB 缓存的使用率,进而提高CPU的内存访问性能。
不过要注意,MMU 并不以字节为单位来管理内存,而是规定了一个内存映射的最小单位,也就是页,通常是 4 KB大小。这样,每一次内存映射,都需要关联 4 KB 或者 4KB 整数倍的内存空间。
页的大小只有4 KB ,导致的另一个问题就是,整个页表会变得非常大。比方说,仅 32 位系统就需要 100 多万个页表项(4GB/4KB),才可以实现整个地址空间的映射。为了解决页表项过多的问题,Linux 提供了两种机制,也就是多级页表和大页(HugePage)。
多级页表就是把内存分成区块来管理,将原来的映射关系改成区块索引和区块内的偏移。由于虚拟内存空间通常只用了很少一部分,那么,多级页表就只保存这些使用中的区块,这样就可以大大地减少页表的项数。
Linux 用的正是四级页表来管理内存页,如下图所示,虚拟地址被分为5个部分,前4个表项用于选择页,而最后一个索引表示页内偏移。

再看大页,顾名思义,就是比普通页更大的内存块,常见的大小有 2MB 和 1GB。大页通常用在使用大量内存的进程上,比如 Oracle、DPDK 等。
通过这些机制,在页表的映射下,进程就可以通过虚拟地址来访问物理内存了。那么具体到一个 Linux 进程中,这些内存又是怎么使用的呢?
虚拟内存空间分布
首先,我们需要进一步了解虚拟内存空间的分布情况。最上方的内核空间不用多讲,下方的用户空间内存,其实又被分成了多个不同的段。以 32 位系统为例,我画了一张图来表示它们的关系。

通过这张图你可以看到,用户空间内存,从低到高分别是五种不同的内存段。
-
只读段,包括代码和常量等。
-
数据段,包括全局变量等。
-
堆,包括动态分配的内存,从低地址开始向上增长。
-
文件映射段,包括动态库、共享内存等,从高地址开始向下增长。
-
栈,包括局部变量和函数调用的上下文等。栈的大小是固定的,一般是 8 MB。
在这五个内存段中,堆和文件映射段的内存是动态分配的。比如说,使用 C 标准库的 malloc() 或者 mmap() ,就可以分别在堆和文件映射段动态分配内存。
其实64位系统的内存分布也类似,只不过内存空间要大得多。那么,更重要的问题来了,内存究竟是怎么分配的呢?
内存分配与回收
malloc() 是 C 标准库提供的内存分配函数,对应到系统调用上,有两种实现方式,即 brk() 和 mmap()。
对小块内存(小于128K),C 标准库使用 brk() 来分配,也就是通过移动堆顶的位置来分配内存。这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用。
而大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去。
这两种方式,自然各有优缺点。
brk() 方式的缓存,可以减少缺页异常的发生,提高内存访问效率。不过,由于这些内存没有归还系统,在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片。
而 mmap() 方式分配的内存,会在释放时直接归还系统,所以每次 mmap 都会发生缺页异常。在内存工作繁忙时,频繁的内存分配会导致大量的缺页异常,使内核的管理负担增大。这也是malloc 只对大块内存使用 mmap 的原因。
了解这两种调用方式后,我们还需要清楚一点,那就是,当这两种调用发生后,其实并没有真正分配内存。这些内存,都只在首次访问时才分配,也就是通过缺页异常进入内核中,再由内核来分配内存。
整体来说,Linux 使用伙伴系统来管理内存分配。前面我们提到过,这些内存在MMU中以页为单位进行管理,伙伴系统也一样,以页为单位来管理内存,并且会通过相邻页的合并,减少内存碎片化(比如brk方式造成的内存碎片)。
你可能会想到一个问题,如果遇到比页更小的对象,比如不到1K的时候,该怎么分配内存呢?
实际系统运行中,确实有大量比页还小的对象,如果为它们也分配单独的页,那就太浪费内存了。
所以,在用户空间,malloc 通过 brk() 分配的内存,在释放时并不立即归还系统,而是缓存起来重复利用。在内核空间,Linux 则通过 slab 分配器来管理小内存。你可以把slab 看成构建在伙伴系统上的一个缓存,主要作用就是分配并释放内核中的小对象。
对内存来说,如果只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存。所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存。
当然,系统也不会任由某个进程用完所有内存。在发现内存紧张时,系统就会通过一系列机制来回收内存,比如下面这三种方式:
-
回收缓存,比如使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面;
-
回收不常访问的内存,把不常用的内存通过交换分区直接写到磁盘中;
-
杀死进程,内存紧张时系统还会通过 OOM(Out of Memory),直接杀掉占用大量内存的进程。
其中,第二种方式回收不常访问的内存时,会用到交换分区(以下简称 Swap)。Swap 其实就是把一块磁盘空间当成内存来用。它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)。
所以,你可以发现,Swap 把系统的可用内存变大了。不过要注意,通常只在内存不足时,才会发生 Swap 交换。并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题。
第三种方式提到的 OOM(Out of Memory),其实是内核的一种保护机制。它监控进程的内存使用情况,并且使用 oom_score 为每个进程的内存使用情况进行评分:
-
一个进程消耗的内存越大,oom_score 就越大;
-
一个进程运行占用的 CPU 越多,oom_score 就越小。
这样,进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死,从而可以更好保护系统。
当然,为了实际工作的需要,管理员可以通过 /proc 文件系统,手动设置进程的 oom_adj ,从而调整进程的 oom_score。
oom_adj 的范围是 [-17, 15],数值越大,表示进程越容易被 OOM 杀死;数值越小,表示进程越不容易被 OOM 杀死,其中 -17 表示禁止 OOM。
比如用下面的命令,你就可以把 sshd 进程的 oom_adj 调小为 -16,这样, sshd 进程就不容易被 OOM 杀死。
echo -16 > /proc/$(pidof sshd)/oom_adj
如何查看内存使用情况
通过了解内存空间的分布,以及内存的分配和回收,我想你对内存的工作原理应该有了大概的认识。当然,系统的实际工作原理更加复杂,也会涉及其他一些机制,这里我只讲了最主要的原理。掌握了这些,你可以对内存的运作有一条主线认识,不至于脑海里只有术语名词的堆砌。
那么在了解内存的工作原理之后,我们又该怎么查看系统内存使用情况呢?
其实前面CPU内容的学习中,我们也提到过一些相关工具。在这里,你第一个想到的应该是 free 工具吧。下面是一个 free 的输出示例:
# 注意不同版本的free输出可能会有所不同
$ free
total used free shared buff/cache available
Mem: 8169348 263524 6875352 668 1030472 7611064
Swap: 0 0 0
你可以看到,free 输出的是一个表格,其中的数值都默认以字节为单位。表格总共有两行六列,这两行分别是物理内存 Mem 和交换分区 Swap 的使用情况,而六列中,每列数据的含义分别为:
-
第一列,total 是总内存大小;
-
第二列,used 是已使用内存的大小,包含了共享内存;
-
第三列,free 是未使用内存的大小;
-
第四列,shared 是共享内存的大小;
-
第五列,buff/cache 是缓存和缓冲区的大小;
-
最后一列,available 是新进程可用内存的大小。
这里尤其注意一下,最后一列的可用内存available 。available不仅包含未使用内存,还包括了可回收的缓存,所以一般会比未使用内存更大。不过,并不是所有缓存都可以回收,因为有些缓存可能正在使用中。
不过,我们知道,free 显示的是整个系统的内存使用情况。如果你想查看进程的内存使用情况,可以用 top 或者 ps 等工具。比如,下面是 top 的输出示例:
# 按下M切换到内存排序
$ top
...
KiB Mem : 8169348 total, 6871440 free, 267096 used, 1030812 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 7607492 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
430 root 19 -1 122360 35588 23748 S 0.0 0.4 0:32.17 systemd-journal
1075 root 20 0 771860 22744 11368 S 0.0 0.3 0:38.89 snapd
1048 root 20 0 170904 17292 9488 S 0.0 0.2 0:00.24 networkd-dispat
1 root 20 0 78020 9156 6644 S 0.0 0.1 0:22.92 systemd
12376 azure 20 0 76632 7456 6420 S 0.0 0.1 0:00.01 systemd
12374 root 20 0 107984 7312 6304 S 0.0 0.1 0:00.00 sshd
...
top 输出界面的顶端,也显示了系统整体的内存使用情况,这些数据跟 free 类似,我就不再重复解释。我们接着看下面的内容,跟内存相关的几列数据,比如 VIRT、RES、SHR 以及 %MEM 等。
这些数据,包含了进程最重要的几个内存使用情况,我们挨个来看。
-
VIRT 是进程虚拟内存的大小,只要是进程申请过的内存,即便还没有真正分配物理内存,也会计算在内。
-
RES 是常驻内存的大小,也就是进程实际使用的物理内存大小,但不包括 Swap 和共享内存。
-
SHR 是共享内存的大小,比如与其他进程共同使用的共享内存、加载的动态链接库以及程序的代码段等。
-
%MEM 是进程使用物理内存占系统总内存的百分比。
除了要认识这些基本信息,在查看 top 输出时,你还要注意两点。
第一,虚拟内存通常并不会全部分配物理内存。从上面的输出,你可以发现每个进程的虚拟内存都比常驻内存大得多。
第二,共享内存 SHR 并不一定是共享的,比方说,程序的代码段、非共享的动态链接库,也都算在 SHR 里。当然,SHR 也包括了进程间真正共享的内存。所以在计算多个进程的内存使用时,不要把所有进程的 SHR 直接相加得出结果。
小结
今天,我们梳理了 Linux 内存的工作原理。对普通进程来说,它能看到的其实是内核提供的虚拟内存,这些虚拟内存还需要通过页表,由系统映射为物理内存。
当进程通过 malloc() 申请内存后,内存并不会立即分配,而是在首次访问时,才通过缺页异常陷入内核中分配内存。
由于进程的虚拟地址空间比物理内存大很多,Linux 还提供了一系列的机制,应对内存不足的问题,比如缓存的回收、交换分区 Swap 以及 OOM 等。
当你需要了解系统或者进程的内存使用情况时,可以用 free 和 top 、ps 等性能工具。它们都是分析性能问题时最常用的性能工具,希望你能熟练使用它们,并真正理解各个指标的含义。
思考
最后,我想请你来聊聊你所理解的Linux内存。你碰到过哪些内存相关的性能瓶颈?你又是怎么样来分析它们的呢?你可以结合今天学到的内存知识和工作原理,提出自己的观点。
欢迎在留言区和我讨论,也欢迎你把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。
精选留言
2018-12-24 14:02:48
2019-03-27 10:18:14
2、brk()方式之所以会产生内存碎片,是由于brk分配的内存是推_edata指针,从堆的低地址向高地址推进。这种情况下,如果高地址的内存不释放,低地址的内存是得不到释放的
3、mmap()方式分配的内存,是在堆与栈之间的空闲区域分配虚拟内存,直接拿到的是内存地址,可以直接操作内存的释放
上述的都是在用户空间发生的行为,只有在内核空间,内核调用kmalloc去分配内存的时候,才会涉及到slab
2018-12-24 01:19:52
linux的内存跟windows的很不一样。类linux的系统会尽量使用内存缓存东西,提供运行效率。所以linux/mac显示的free剩余内存通常很小,但实际上被缓存的cache可能很大,并不代表系统内存紧张!
曾经就闹过笑话,看见系统free值很低,怕程序因为oom被系统杀掉,还特意写个c程序去挤内存。程序不停的申请1MB内存然后memset,随机挑几个位置写,保证申请的都被加载到物理内存中。(跟文中描述的一致,只申请不使用不会加载到物理内存)然后挤的差不多了就把测试程序关掉。看上去free变大了很多很开心。现在想想,就是掩耳盗铃罢了。
以前物理机上还有swap交换分区,现在都是云服务器,基本没有了该分区。也不会遇到因为频繁使用交换分区导致性能下降的问题了。
我内存方面的问题遇到的都比较简单,基本上就是top/free看看系统和各程序的,找到有问题的程序,看看是否有内存泄露。平常不泄漏都是够用的。
redis对内存比较敏感,曾经就因为配置项是默认值,在内存用完后,所有的set操作都直接返回错误,导致线上系统故障。(redis在备份时会新开一个进程,实际使用内存量会翻番。)后来会定期检查redis 的info memory 看内存使用情况。
——————————
期待的内存篇开始了,好开心!又可以跟着老师学新知识啦!
2018-12-24 09:34:12
2018-12-24 09:44:16
2018-12-24 08:33:45
2020-07-01 15:47:00
1.linux内核给每个进程提供了一个独立的虚拟地址空间,并且这个空间是连续的。
2.虚拟地址空间分为内核空间和用户空间。进程在用户态时只能访问用户空间内存,只有进入内核态后才能访问内核空间内存;虽然每个进程都有内核空间,但这些内核空间关联的是相同的物理内存。
3.并不是所有的虚拟内存都会分配物理内存,只有实际使用的虚拟内存才分配物理内存;
二、内存回收的三种方式:
1.回收缓存,比如通过LRU算法回收最近很少使用的内存页面;
2.回收不常访问的内存,把不常用的内存通过交换分区直接写到磁盘中;
注意:此方法会用到swap分区。把进程暂时不用的数据放到磁盘(swap)上,不过会严重影响性能;
3.通过oom杀死进程;
1.一个进程消耗的内存越大,oom_score越大;
2.一个进程运行占用的cpu越多,oom_score越小;
3.oom_score越大的进程,越容易被OOM杀死;
4.可以通过调整/proc/${pidof sshd)/oom_adj来调整oom_score,值范围是[-17,15],-17表示禁止被OOM;
三、内存查看方式:
1. free
2. top
1. VIRT是进程申请的虚拟内存,比实际占用内存要大得多;
2. RES是常驻内存,是进程实际占用内存;
3. SHR是共享内存,比如与其他进程共同使用的共享内存、加载的动态链接库以及程序的代码段等。不过SHR也会有程序代码段,非共享动态链接库等,所以不能把多个进程的SHR相加得结果;
注意:
1. 虚拟内存通常不会全部分配到物理内存;
2018-12-24 19:46:59
2019-02-28 21:06:43
2018-12-24 19:20:39
2018-12-24 10:29:07
1. 当内存紧张时,系统通过三种机制回收内存。第二种换页比较好理解, 但是第一种LRU回收内存页怎么理解?回收后的页去哪了?如果直接删除会导致程序出问题吗?
2. OOM的分数是参照进程的实际消耗内存还是虚拟内存大小?
3. 进程启动时,是不是需要分配一个最小的内存?都包括什么呢?如何确定最小的内存是多大呢?比如我在k8s里设置container的request值,我希望是能容乃下这个container的最小内存,有没有办法计算呢?
有的问题比较小白,望老师包含。如果无法简短的回答,能否推荐些资料呢?谢谢
2018-12-24 08:24:49
工作中,发生oom基本都是程序跑的,都甩给研发了~😂
2019-07-11 15:49:16
我们经常说的多少位长,到底有什么区别?就是虚拟内存空间大小,以及空间的分配区别。
虚拟内存和物理内存的分配,怎么让物理内存能及时跟进程需要的虚拟内存交互对应起来?内核态和用户态的切换,知道进程有个虚拟地址,一个是用户的,一个是内核的,当调用进程的某些内存发现维护的内存映射没有对应的,及切换到内核态,内核把对应的虚拟内存放进去物理内存,再切回来用户态,进程继续,妙。
2018-12-24 11:05:00
只有内核中使用kmalloc才回通过slab分配内存
2020-08-18 17:09:45
这边文章关于的内存使用 比较容易懂;
2018-12-24 17:36:10
2020-02-12 20:54:20
2019-03-21 21:05:01
2018-12-24 09:18:25
2020-12-24 09:42:56
关键字:
内存映射
虚拟地址空间
MMU
TLB
多级页表
大页
虚拟内存空间分布
malloc和mmap比较
内存回收的三种方式
交换区
OOM机制
free
top
ps
知识点:
内存映射:将虚拟地址转变为物理地址
虚拟地址空间:
MMU:Memory Management Unit,负责进行内存映射,存储页表
TLB:页表缓存
多级页表:多级映射
大页:每个页大小变大,比如1M等,适用于数据库等
虚拟内存空间分布:从上往下,栈区、文件映射、堆区、数据段、只读段
malloc和mmap比较:malloc通过控制brk()进行内存分配,释放后会先缓存起来;mmap进行文件映射,释放后直接清理内存。频繁mmap会触发大量缺页中断。两种方法都是第一次访问时才分配内存
内存回收三种方式:回收缓存,比如用LRU算法;回收不常用的内存(通过交换分区直接写到磁盘中);OOM,直接杀掉占用大量内存的进程
交换区:
OOM机制:内核用oom_score为每一个进程的内存使用情况进行评分:消耗内存越大,占用CPU越少,oom_score越大,越容易被OOM杀死
命令行指令:
free
top:VIRT(虚拟内存大小),RES(常驻内存大小),SHR(共享内存大小),
ps
问题
1. 为啥多级页表能减少页表项数呢