你好,我是李玥。上节课我们讲了如何确保消息不会丢失,课后我给你留了一个思考题,如果消息重复了怎么办?这节课,我们就来聊一聊如何处理重复消息的问题。
在消息传递过程中,如果出现传递失败的情况,发送方会执行重试,重试的过程中就有可能会产生重复的消息。对使用消息队列的业务系统来说,如果没有对重复消息进行处理,就有可能会导致系统的数据出现错误。
比如说,一个消费订单消息,统计下单金额的微服务,如果没有正确处理重复消息,那就会出现重复统计,导致统计结果错误。
你可能会问,如果消息队列本身能保证消息不重复,那应用程序的实现不就简单了?那有没有消息队列能保证消息不重复呢?
消息重复的情况必然存在
在MQTT协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:
-
At most once: 至多一次。消息在传递时,最多会被送达一次。换一个说法就是,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。
-
At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
-
Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。
这个服务质量标准不仅适用于MQTT,对所有的消息队列都是适用的。我们现在常用的绝大部分消息队列提供的服务质量都是At least once,包括RocketMQ、RabbitMQ和Kafka 都是这样。也就是说,消息队列很难保证消息不重复。
说到这儿我知道肯定有的同学会反驳我:“你说的不对,我看过Kafka的文档,Kafka是支持Exactly once的。”我在这里跟这些同学解释一下,你说的没错,Kafka的确是支持Exactly once,但是我讲的也没有问题,为什么呢?
Kafka支持的“Exactly once”和我们刚刚提到的消息传递的服务质量标准“Exactly once”是不一样的,它是Kafka提供的另外一个特性,Kafka中支持的事务也和我们通常意义理解的事务有一定的差异。在Kafka中,事务和Excactly once主要是为了配合流计算使用的特性,我们在专栏“进阶篇”这个模块中,会有专门的一节课来讲Kafka的事务和它支持的Exactly once特性。
稍微说一些题外话,Kafka的团队是一个非常善于包装和营销的团队,你看他们很巧妙地用了两个所有人都非常熟悉的概念“事务”和“Exactly once”来包装它的新的特性,实际上它实现的这个事务和Exactly once并不是我们通常理解的那两个特性,但是你深入了解Kafka的事务和Exactly once后,会发现其实它这个特性虽然和我们通常的理解不一样,但确实和事务、Exactly once有一定关系。
这一点上,我们都要学习Kafka团队。一个优秀的开发团队,不仅要能写代码,更要能写文档,能写Slide(PPT),还要能讲,会分享。对于每个程序员来说,也是一样的。
我们把话题收回来,继续来说重复消息的问题。既然消息队列无法保证消息不重复,就需要我们的消费代码能够接受“消息是可能会重复的”这一现状,然后,通过一些方法来消除重复消息对业务的影响。
用幂等性解决重复消息问题
一般解决重复消息的办法是,在消费端,让我们消费消息的操作具备幂等性。
幂等(Idempotence) 本来是一个数学上的概念,它是这样定义的:
如果一个函数f(x)满足:f(f(x)) = f(x),则函数f(x)满足幂等性。
这个概念被拓展到计算机领域,被用来描述一个操作、方法或者服务。一个幂等操作的特点是,其任意多次执行所产生的影响均与一次执行的影响相同。
一个幂等的方法,使用同样的参数,对它进行多次调用和一次调用,对系统产生的影响是一样的。所以,对于幂等的方法,不用担心重复执行会对系统造成任何改变。
我们举个例子来说明一下。在不考虑并发的情况下,“将账户X的余额设置为100元”,执行一次后对系统的影响是,账户X的余额变成了100元。只要提供的参数100元不变,那即使再执行多少次,账户X的余额始终都是100元,不会变化,这个操作就是一个幂等的操作。
再举一个例子,“将账户X的余额加100元”,这个操作它就不是幂等的,每执行一次,账户余额就会增加100元,执行多次和执行一次对系统的影响(也就是账户的余额)是不一样的。
如果我们系统消费消息的业务逻辑具备幂等性,那就不用担心消息重复的问题了,因为同一条消息,消费一次和消费多次对系统的影响是完全一样的。也就可以认为,消费多次等于消费一次。
从对系统的影响结果来说:At least once + 幂等消费 = Exactly once。
那么如何实现幂等操作呢?最好的方式就是,从业务逻辑设计上入手,将消费的业务逻辑设计成具备幂等性的操作。但是,不是所有的业务都能设计成天然幂等的,这里就需要一些方法和技巧来实现幂等。
下面我给你介绍几种常用的设计幂等操作的方法:
1. 利用数据库的唯一约束实现幂等
例如我们刚刚提到的那个不具备幂等特性的转账的例子:将账户X的余额加100元。在这个例子中,我们可以通过改造业务逻辑,让它具备幂等性。
首先,我们可以限定,对于每个转账单每个账户只可以执行一次变更操作,在分布式系统中,这个限制实现的方法非常多,最简单的是我们在数据库中建一张转账流水表,这个表有三个字段:转账单ID、账户ID和变更金额,然后给转账单ID和账户ID这两个字段联合起来创建一个唯一约束,这样对于相同的转账单ID和账户ID,表里至多只能存在一条记录。
这样,我们消费消息的逻辑可以变为:“在转账流水表中增加一条转账记录,然后再根据转账记录,异步操作更新用户余额即可。”在转账流水表增加一条转账记录这个操作中,由于我们在这个表中预先定义了“账户ID转账单ID”的唯一约束,对于同一个转账单同一个账户只能插入一条记录,后续重复的插入操作都会失败,这样就实现了一个幂等的操作。我们只要写一个SQL,正确地实现它就可以了。
基于这个思路,不光是可以使用关系型数据库,只要是支持类似“INSERT IF NOT EXIST”语义的存储类系统都可以用于实现幂等,比如,你可以用Redis的SETNX命令来替代数据库中的唯一约束,来实现幂等消费。
2. 为更新的数据设置前置条件
另外一种实现幂等的思路是,给数据变更设置一个前置条件,如果满足条件就更新数据,否则拒绝更新数据,在更新数据的时候,同时变更前置条件中需要判断的数据。这样,重复执行这个操作时,由于第一次更新数据的时候已经变更了前置条件中需要判断的数据,不满足前置条件,则不会重复执行更新数据操作。
比如,刚刚我们说过,“将账户X的余额增加100元”这个操作并不满足幂等性,我们可以把这个操作加上一个前置条件,变为:“如果账户X当前的余额为500元,将余额加100元”,这个操作就具备了幂等性。对应到消息队列中的使用时,可以在发消息时在消息体中带上当前的余额,在消费的时候进行判断数据库中,当前余额是否与消息中的余额相等,只有相等才执行变更操作。
但是,如果我们要更新的数据不是数值,或者我们要做一个比较复杂的更新操作怎么办?用什么作为前置判断条件呢?更加通用的方法是,给你的数据增加一个版本号属性,每次更数据前,比较当前数据的版本号是否和消息中的版本号一致,如果不一致就拒绝更新数据,更新数据的同时将版本号+1,一样可以实现幂等更新。
3. 记录并检查操作
如果上面提到的两种实现幂等方法都不能适用于你的场景,我们还有一种通用性最强,适用范围最广的实现幂等性方法:记录并检查操作,也称为“Token机制或者GUID(全局唯一ID)机制”,实现的思路特别简单:在执行数据更新操作之前,先检查一下是否执行过这个更新操作。
具体的实现方法是,在发送消息时,给每条消息指定一个全局唯一的ID,消费时,先根据这个ID检查这条消息是否有被消费过,如果没有消费过,才更新数据,然后将消费状态置为已消费。
原理和实现是不是很简单?其实一点儿都不简单,在分布式系统中,这个方法其实是非常难实现的。首先,给每个消息指定一个全局唯一的ID就是一件不那么简单的事儿,方法有很多,但都不太好同时满足简单、高可用和高性能,或多或少都要有些牺牲。更加麻烦的是,在“检查消费状态,然后更新数据并且设置消费状态”中,三个操作必须作为一组操作保证原子性,才能真正实现幂等,否则就会出现Bug。
比如说,对于同一条消息:“全局ID为8,操作为:给ID为666账户增加100元”,有可能出现这样的情况:
-
t0时刻:Consumer A 收到条消息,检查消息执行状态,发现消息未处理过,开始执行“账户增加100元”;
-
t1时刻:Consumer B 收到条消息,检查消息执行状态,发现消息未处理过,因为这个时刻,Consumer A还未来得及更新消息执行状态。
这样就会导致账户被错误地增加了两次100元,这是一个在分布式系统中非常容易犯的错误,一定要引以为戒。
对于这个问题,当然我们可以用事务来实现,也可以用锁来实现,但是在分布式系统中,无论是分布式事务还是分布式锁都是比较难解决问题。
小结
这节课我们主要介绍了通过幂等消费来解决消息重复的问题,然后我重点讲了几种实现幂等操作的方法,你可以利用数据库的约束来防止重复更新数据,也可以为数据更新设置一次性的前置条件,来防止重复消息,如果这两种方法都不适用于你的场景,还可以用“记录并检查操作”的方式来保证幂等,这种方法适用范围最广,但是实现难度和复杂度也比较高,一般不推荐使用。
这些实现幂等的方法,不仅可以用于解决重复消息的问题,也同样适用于,在其他场景中来解决重复请求或者重复调用的问题。比如,我们可以将HTTP服务设计成幂等的,解决前端或者APP重复提交表单数据的问题;也可以将一个微服务设计成幂等的,解决RPC框架自动重试导致的重复调用问题。这些方法都是通用的,希望你能做到触类旁通,举一反三。
思考题
最后请你想一下,为什么大部分消息队列都选择只提供At least once的服务质量,而不是级别更高的Exactly once呢?欢迎在留言区与我分享讨论。
感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给你的朋友。
精选留言
2019-08-03 10:18:56
所以,消息队列不实现exactly once,而是at least once + 幂等性,这个幂等性让给我们去处理。
2019-08-03 09:06:25
2019-08-03 11:06:46
1、使用数据库的唯一索引防止消息被重复消费,感觉如果业务系统存在分库分表,消费消息被路由到不同的库或表,还是会存在问题。
2、为更新的数据设置前置条件,可以在消息中附带属性,比如当前账户的总金额,或者表中多加一个版本号字段,配合数据库行锁,类似乐观锁的概念,Java CAS,比较内存中的旧值是否和预先的旧值相等,如果是替换成新值。存在的问题和1类似。
3、记录并检查操作,在每个消息中维护一个全局唯一的ID,根据全局唯一ID进行判断消息是否已经被消费。存在的问题,全局唯一ID的实现有一定的复杂度,需要确保检查消费状态、更新数据、以及更新消费状态三个操作原子性,解决方式涉及到分布式锁和分布式事务,并且对高性能、高并发也有一定的影响。
4、尝试回答下课后习题①设置成Exactly once从消息队列的角度来看,为了确保消息没有被丢失或者重复,队列需采取一定的类似回查的手段,检测消费者是否有收到消息进行处理,在一定程度上会导致队列堆积等一系列问题,并且队列实现的复杂度上升。②从消费者的角度而言,因为消费者端和Broker Service端都是会各自集群,消费者端可能会存在网络抖动,导致Broker Service为了确保消息不丢失和重复,需要一直进行回查类似的操作,但是由于网络问题,导致队列堆积。
5、有个疑问如果队列的实现是At least once,但是为了确保消息不丢失,Broker Service会进行一定的重试,但是不可能一直重试,如果一直重试失败怎么处理了?
2019-08-07 20:48:43
2019-08-14 20:08:37
2019-08-05 22:36:09
2019-08-03 10:59:52
1、按照您给的公式:At least once + 幂等消费 = Exactly once,所以对于消息队列来讲,要做到Exactly once,其实是需消费端的共同配合(幂等消费)才可完成,消息队列基本只提供At least once的实现;
2、从给的几种幂等消费的方案看,需要引入数据库、条件更新、分布式事务或锁等额外辅助,消息队列如果需要保障Exactly once,会导致消费端代码侵入,例如需要消费端增加消息队列用来处理幂等的client端,而消费端的形态可是太多了,兼容适配工作量巨大。故这个Exactly once留给用户自己处理,并且具有选择权,毕竟不是所有业务场景都需要Exactly once,例如老师讲的机房温度上报的案例。
2020-03-12 18:47:16
2019-08-03 06:45:08
1.硬件异常或者系统异常导致的数据丢失:这里想咨询老师一下,消息队列为何不能做成像数据库一样的用undo log和redo log去避免硬件的这种异常。
2.就像为何网络协议中一样TCP和UDP的区别:消息反馈可能不是每一个反馈一次,有时是一批反馈异常,传输中可能会出现丢包或者顺序不一致。
最近几个刚好同时在学:刘超老师的网络协议、操作系统以及您的消息队列觉得之间有彼此的关系;能力有限,故而仅仅是猜测,只能通过不断的向各位老师学习才能不断的找出问题提升自己,不足之处还望老师提点-谢谢。
2019-08-03 01:52:34
1.如果客户端设置的是自动ack,那么mq就能保证只发送一次,但是这样会因为客户端消费消息不成功,而导致消息丢失
2.如果客户端都设置手动ack,这样又有一个问题,如果mq发送消息给客户端成功了,客户端也已经消费完成了,就在准备ack的时候,和mq失去了联系,这时候mq是不知道,这条消息是否真的被消费了,只能选择重发消息。
所以我觉得:如果消息队列保证了只发一次,那么消息队列就无法保证消息由于客户端消费失败而不丢失,就好像分布式系统中的cap理论,只能保证其中的两种,而无法三个都保证。
2019-10-21 02:29:45
”t0 时刻:Consumer A 收到条消息,检查消息执行状态,发现消息未处理过,开始执行“账户增加 100 元”;
t1 时刻:Consumer B 收到条消息,检查消息执行状态,发现消息未处理过,因为这个时刻,Consumer A 还未来得及更新消息执行状态。”
1.这是因为每个队列配置多个消费组导致的吧?
2.通常情况下配置多个消费组是为了提升消费能力?
3.如果配置多个消费组是为了提升消费能力,那么为什么每个消费组配置多个消费者?反正每个消费组只有一个消费者能成功消费到消息。每个消费组只配置一个消费者不行吗?
2020-01-05 09:55:25
”t0 时刻:Consumer A 收到条消息,检查消息执行状态,发现消息未处理过,开始执行“账户增加 100 元”;
t1 时刻:Consumer B 收到条消息,检查消息执行状态,发现消息未处理过,因为这个时刻,Consumer A 还未来得及更新消息执行状态。”
这个情况只能在有消息重发,且重发到了不同队列上才可能发生吧,否则再怎么重发都会由相同的消费者消费。
2020-03-03 00:28:21
2019-08-03 15:20:23
2020-01-05 09:27:46
我看很多小伙伴们留言说业务端实现幂等就完全解决问题了,但我觉得幂等不是银弹,不能解决所有问题。
幂等只能保证消息被重复消费后的结果正确,但重复消费消息本身也是有代价的。举例,一个业务操作是写文件,执行成本是锁定文件、IO、网络传输、CPU时间片占用等,这些都是没有价值的,类似于不挂挡踩油门,听响而已。
个人观点,如果业务执行开销较小,那么业务幂等就够了。如果业务执行开销大,那么前置条件判断就比较好,虽然条件的判断也会有不小开销,但两害相权取其轻。如果任一种的代价都太大,那么看能否拆分业务操作,拆分后哪个代价小就用哪个。
另,根据老师的定义,这里的幂等“其任意多次执行所产生的影响均与一次执行的影响相同”应该不包含前置条件检查和记录并检查,因为这两个都没有“多次执行”,所以应该是与幂等并列的解决重复消息问题的实现方式。
有不妥处,请不吝指教。
2019-11-10 10:58:55
2019-08-29 16:55:54
请问:这个消费状态是什么?怎么获取这个消息状态,然后怎么设置它的状态?
2020-04-26 17:32:09
2020-03-04 00:03:30
2020-02-19 14:20:55