前面我们讲的都是线性表结构,栈、队列等等。今天我们讲一种非线性表结构,树。树这种数据结构比线性表的数据结构要复杂得多,内容也比较多,所以我会分四节来讲解。

我反复强调过,带着问题学习,是最有效的学习方式之一,所以在正式的内容开始之前,我还是给你出一道思考题:二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?
带着这些问题,我们就来学习今天的内容,树!
树(Tree)
我们首先来看,什么是“树”?再完备的定义,都没有图直观。所以我在图中画了几棵“树”。你来看看,这些“树”都有什么特征?

你有没有发现,“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫做“节点”;用来连接相邻节点之间的关系,我们叫做“父子关系”。
比如下面这幅图,A节点就是B节点的父节点,B节点是A节点的子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫做根节点,也就是图中的节点E。我们把没有子节点的节点叫做叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

除此之外,关于“树”,还有三个比较相似的概念:高度(Height)、深度(Depth)、层(Level)。它们的定义是这样的:

这三个概念的定义比较容易混淆,描述起来也比较空洞。我举个例子说明一下,你一看应该就能明白。

记这几个概念,我还有一个小窍门,就是类比“高度”“深度”“层”这几个名词在生活中的含义。
在我们的生活中,“高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。
“深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。
“层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点位于第1层。
二叉树(Binary Tree)
树结构多种多样,不过我们最常用还是二叉树。
二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我画的这几个都是二叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。

这个图里面,有两个比较特殊的二叉树,分别是编号2和编号3这两个。
其中,编号2的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做满二叉树。
编号3的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。
满二叉树很好理解,也很好识别,但是完全二叉树,有的人可能就分不清了。我画了几个完全二叉树和非完全二叉树的例子,你可以对比着看看。

你可能会说,满二叉树的特征非常明显,我们把它单独拎出来讲,这个可以理解。但是完全二叉树的特征不怎么明显啊,单从长相上来看,完全二叉树并没有特别特殊的地方啊,更像是“芸芸众树”中的一种。
那我们为什么还要特意把它拎出来讲呢?为什么偏偏把最后一层的叶子节点靠左排列的叫完全二叉树?如果靠右排列就不能叫完全二叉树了吗?这个定义的由来或者说目的在哪里?
要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?
想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
我们先来看比较简单、直观的链式存储法。从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

我们再来看,基于数组的顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

我来总结一下,如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。
不过,我刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。你可以看我举的下面这个例子。

所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。
当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。
二叉树的遍历
前面我讲了二叉树的基本定义和存储方法,现在我们来看二叉树中非常重要的操作,二叉树的遍历。这也是非常常见的面试题。
如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历、中序遍历和后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。
-
前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
-
中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
-
后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。
写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题A,就假设子问题B、C已经解决,然后再来看如何利用B、C来解决A。所以,我们可以把前、中、后序遍历的递推公式都写出来。
前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r
有了递推公式,代码写起来就简单多了。这三种遍历方式的代码,我都写出来了,你可以看看。
void preOrder(Node* root) {
if (root == null) return;
print root // 此处为伪代码,表示打印root节点
preOrder(root->left);
preOrder(root->right);
}
void inOrder(Node* root) {
if (root == null) return;
inOrder(root->left);
print root // 此处为伪代码,表示打印root节点
inOrder(root->right);
}
void postOrder(Node* root) {
if (root == null) return;
postOrder(root->left);
postOrder(root->right);
print root // 此处为伪代码,表示打印root节点
}
二叉树的前、中、后序遍历的递归实现是不是很简单?你知道二叉树遍历的时间复杂度是多少吗?我们一起来看看。
从我前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)。
解答开篇&内容小结
今天,我讲了一种非线性表数据结构,树。关于树,有几个比较常用的概念你需要掌握,那就是:根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度、层数,以及树的高度。
我们平时最常用的树就是二叉树。二叉树的每个节点最多有两个子节点,分别是左子节点和右子节点。二叉树中,有两种比较特殊的树,分别是满二叉树和完全二叉树。满二叉树又是完全二叉树的一种特殊情况。
二叉树既可以用链式存储,也可以用数组顺序存储。数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。除此之外,二叉树里非常重要的操作就是前、中、后序遍历操作,遍历的时间复杂度是O(n),你需要理解并能用递归代码来实现。
课后思考
-
给定一组数据,比如1,3,5,6,9,10。你来算算,可以构建出多少种不同的二叉树?
-
我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另外一种遍历方式,也就是按层遍历,你知道如何实现吗?
欢迎留言和我分享,我会第一时间给你反馈。
精选留言
2018-11-18 23:10:14
2018-11-12 00:58:59
2.层次遍历需要借助队列这样一个辅助数据结构。(其实也可以不用,这样就要自己手动去处理节点的关系,代码不太好理解,好处就是空间复杂度是o(1)。不过用队列比较好理解,缺点就是空间复杂度是o(n))。根节点先入队列,然后队列不空,取出对头元素,如果左孩子存在就入列队,否则什么也不做,右孩子同理。直到队列为空,则表示树层次遍历结束。树的层次遍历,其实也是一个广度优先的遍历算法。
2018-11-18 09:21:08
确定两点:
1)n个数,即n个节点,能构造出多少种不同形态的树?
2)n个数,有多少种不同的排列?
当确定以上两点,将【1)的结果】乘以 【2)的结果】,即为最终的结果。
但是有一个注意的点: 如果n中有相等的数,产生的总排列数就不是n!了哟
通过这一题,我学到了【卡塔兰数】:https://en.wikipedia.org/wiki/Catalan_number
第二题:
层序遍历,借用队列辅助即可,根节点先入队列,然后循环从队列中pop节点,将pop出来的节点的左子节点先入队列,右节点后入队列,依次循环,直到队列为空,遍历结束。
leetcode上有个类似的题目,链接为:https://leetcode.com/problems/binary-tree-level-order-traversal/
Java代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
if (root == null) return new ArrayList<>(0);
List<List<Integer>> result = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
Queue<TreeNode> curLevelNodes = new LinkedList<TreeNode>();
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
curLevelNodes.offer(node);
if (queue.isEmpty()) {
List<Integer> list = new ArrayList<>(curLevelNodes.size());
while (!curLevelNodes.isEmpty()) {
TreeNode curNode = curLevelNodes.poll();
list.add(curNode.val);
if (curNode.left != null) {
queue.offer(curNode.left);
}
if (curNode.right != null) {
queue.offer(curNode.right);
}
}
result.add(list);
}
}
return result;
}
}
2018-11-21 21:39:15
2、二叉树按层遍历,可以看作以根结点为起点,图的广度优先遍历的问题。
2019-04-28 15:43:22
2018-11-24 20:43:07
1.树、二叉树
2.二叉查找树
3.平衡二叉树、红黑树
4.递归树
一、树
1.树的常用概念
根节点、叶子节点、父节点、子节点、兄弟节点,还有节点的高度、深度以及层数,树的高度。
2.概念解释
节点:树中的每个元素称为节点
父子关系:相邻两节点的连线,称为父子关系
根节点:没有父节点的节点
叶子节点:没有子节点的节点
父节点:指向子节点的节点
子节点:被父节点指向的节点
兄弟节点:具有相同父节点的多个节点称为兄弟节点关系
节点的高度:节点到叶子节点的最长路径所包含的边数
节点的深度:根节点到节点的路径所包含的边数
节点的层数:节点的深度+1(根节点的层数是1)
树的高度:等于根节点的高度
二、二叉树
1.概念
①什么是二叉树?
每个节点最多只有2个子节点的树,这两个节点分别是左子节点和右子节点。
②什么是满二叉树?
有一种二叉树,除了叶子节点外,每个节点都有左右两个子节点,这种二叉树叫做满二叉树。
③什么是完全二叉树?
有一种二叉树,叶子节点都在最底下两层,最后一层叶子节都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。
2.完全二叉树的存储
①链式存储
每个节点由3个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式比较常用,大部分二叉树代码都是通过这种方式实现的。
②顺序存储
用数组来存储,对于完全二叉树,如果节点X存储在数组中的下标为i,那么它的左子节点的存储下标为2*i,右子节点的下标为2*i+1,反过来,下标i/2位置存储的就是该节点的父节点。注意,根节点存储在下标为1的位置。完全二叉树用数组来存储时最省内存的方式。
3.二叉树的遍历
①前序遍历:对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
②中序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的本身,最后打印它的右子树。
③后序遍历:对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印它本身。
前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r
时间复杂度:3种遍历方式中,每个节点最多会被访问2次,所以时间复杂度是O(n)。
三、思考
1.二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?
2.给定一组数据,比如1,3,5,6,9,10.你来算算,可以构建出多少种不同的二叉树?
3.我们讲了三种二叉树的遍历方式,前、中、后序。实际上,还有另一种遍历方式,也就是按层遍历,你知道如何实现吗?
4.如何用循环实现二叉树的遍历?
2018-11-30 02:16:42
* 层次遍历二叉树
*
* @param root
*/
public static void levelOrder(Node root) {
if (root == null) {
return;
}
LinkedList<Node> queue = new LinkedList<Node>();
queue.add(root);
while (!queue.isEmpty()) {
Node currentNode = queue.poll();
System.out.print(currentNode.getValue() + " ");
if (currentNode.getLeft() != null) {
queue.add(currentNode.getLeft());
}
if (currentNode.getRight() != null) {
queue.add(currentNode.getRight());
}
}
}
2019-01-21 20:20:20
2018-11-21 18:13:18
2019-03-15 22:01:37
2020-06-28 20:30:41
leetcode:94、105、106、889
2019-02-05 22:18:39
2019-01-23 09:47:00
2018-11-12 22:03:25
2018-12-16 18:07:07
2018-11-28 08:55:04
2019-06-18 17:43:48
高深共几层
抬头看天空
低头探深坑
敢问何处去
此处落几层
高度(抬头看天空,站在地平面。所以0开始)
深度(低头探深坑,站在地平面。所以0开始)
层数(此处落几层,站在这层楼,所以1开始)
2019-05-06 13:34:17
2018-11-26 16:02:14
1. 一组数能构建多少个二叉树?
第一时间想到只要排列位置有改变,那么就应该是新的二叉树。组合排列的公式有点忘记了。。。那么用笨方法:
当只有1个数的时候,能构建1个二叉树;2个数时是2个二叉树;3个数有6个二叉树;再看下4个数,原来是24个;最后得出n!
2. 层序遍历二叉树:
数组和链表的方式都一样。先打印本身的数据,然后将左右节点塞到一个队列中;从队列里取第一个节点打印数据,并将其左右节点再塞到队列,以此类推。
2020-02-18 10:25:36
包括3种深度优先搜索(DFS)和1种广度优先搜索(BFS)。
https://mp.weixin.qq.com/s/0b5OsnFLLg18Td4CuR51_Q