你好,我是陈皓,网名左耳朵耗子。
我们再来看Go语言这个模式,Go语言的这个模式挺好玩儿的。声明一个struct,跟C很一样,然后直接把这个struct类型放到另一个struct里。
委托的简单示例
我们来看几个示例:
type Widget struct {
X, Y int
}
type Label struct {
Widget // Embedding (delegation)
Text string // Aggregation
X int // Override
}
func (label Label) Paint() {
// [0xc4200141e0] - Label.Paint("State")
fmt.Printf("[%p] - Label.Paint(%q)\n",
&label, label.Text)
}
由上面可知:
-
我们声明了一个
Widget,其有X和Y; -
然后用它来声明一个
Label,直接把Widget委托进去; -
然后再给
Label声明并实现了一个Paint()方法。
于是,我们就可以这样编程了:
label := Label{Widget{10, 10}, "State", 100}
// X=100, Y=10, Text=State, Widget.X=10
fmt.Printf("X=%d, Y=%d, Text=%s Widget.X=%d\n",
label.X, label.Y, label.Text,
label.Widget.X)
fmt.Println()
// {Widget:{X:10 Y:10} Text:State X:100}
// {{10 10} State 100}
fmt.Printf("%+v\n%v\n", label, label)
label.Paint()
我们可以看到,如果有成员变量重名,则需要手动地解决冲突。
我们继续扩展代码。
先来一个 Button:
type Button struct {
Label // Embedding (delegation)
}
func NewButton(x, y int, text string) Button {
return Button{Label{Widget{x, y}, text, x}}
}
func (button Button) Paint() { // Override
fmt.Printf("[%p] - Button.Paint(%q)\n",
&button, button.Text)
}
func (button Button) Click() {
fmt.Printf("[%p] - Button.Click()\n", &button)
}
再来一个 ListBox:
type ListBox struct {
Widget // Embedding (delegation)
Texts []string // Aggregation
Index int // Aggregation
}
func (listBox ListBox) Paint() {
fmt.Printf("[%p] - ListBox.Paint(%q)\n",
&listBox, listBox.Texts)
}
func (listBox ListBox) Click() {
fmt.Printf("[%p] - ListBox.Click()\n", &listBox)
}
然后,声明两个接口用于多态:
type Painter interface {
Paint()
}
type Clicker interface {
Click()
}
于是我们就可以这样泛型地使用(注意其中的两个for循环):
button1 := Button{Label{Widget{10, 70}, "OK", 10}}
button2 := NewButton(50, 70, "Cancel")
listBox := ListBox{Widget{10, 40},
[]string{"AL", "AK", "AZ", "AR"}, 0}
fmt.Println()
//[0xc4200142d0] - Label.Paint("State")
//[0xc420014300] - ListBox.Paint(["AL" "AK" "AZ" "AR"])
//[0xc420014330] - Button.Paint("OK")
//[0xc420014360] - Button.Paint("Cancel")
for _, painter := range []Painter{label, listBox, button1, button2} {
painter.Paint()
}
fmt.Println()
//[0xc420014450] - ListBox.Click()
//[0xc420014480] - Button.Click()
//[0xc4200144b0] - Button.Click()
for _, widget := range []interface{}{label, listBox, button1, button2} {
if clicker, ok := widget.(Clicker); ok {
clicker.Click()
}
}
一个 Undo 的委托重构
上面这个是 Go 语言中的委托和接口多态的编程方式,其实是面向对象和原型编程综合的玩法。这个玩法可不可以玩得更有意思呢?这是可以的。
首先,我们先声明一个数据容器,其中有 Add()、 Delete() 和 Contains() 方法。还有一个转字符串的方法。
type IntSet struct {
data map[int]bool
}
func NewIntSet() IntSet {
return IntSet{make(map[int]bool)}
}
func (set *IntSet) Add(x int) {
set.data[x] = true
}
func (set *IntSet) Delete(x int) {
delete(set.data, x)
}
func (set *IntSet) Contains(x int) bool {
return set.data[x]
}
func (set *IntSet) String() string { // Satisfies fmt.Stringer interface
if len(set.data) == 0 {
return "{}"
}
ints := make([]int, 0, len(set.data))
for i := range set.data {
ints = append(ints, i)
}
sort.Ints(ints)
parts := make([]string, 0, len(ints))
for _, i := range ints {
parts = append(parts, fmt.Sprint(i))
}
return "{" + strings.Join(parts, ",") + "}"
}
我们如下使用这个数据容器:
ints := NewIntSet()
for _, i := range []int{1, 3, 5, 7} {
ints.Add(i)
fmt.Println(ints)
}
for _, i := range []int{1, 2, 3, 4, 5, 6, 7} {
fmt.Print(i, ints.Contains(i), " ")
ints.Delete(i)
fmt.Println(ints)
}
这个数据容器平淡无奇,我们想给它加一个Undo的功能。我们可以这样来做:
type UndoableIntSet struct { // Poor style
IntSet // Embedding (delegation)
functions []func()
}
func NewUndoableIntSet() UndoableIntSet {
return UndoableIntSet{NewIntSet(), nil}
}
func (set *UndoableIntSet) Add(x int) { // Override
if !set.Contains(x) {
set.data[x] = true
set.functions = append(set.functions, func() { set.Delete(x) })
} else {
set.functions = append(set.functions, nil)
}
}
func (set *UndoableIntSet) Delete(x int) { // Override
if set.Contains(x) {
delete(set.data, x)
set.functions = append(set.functions, func() { set.Add(x) })
} else {
set.functions = append(set.functions, nil)
}
}
func (set *UndoableIntSet) Undo() error {
if len(set.functions) == 0 {
return errors.New("No functions to undo")
}
index := len(set.functions) - 1
if function := set.functions[index]; function != nil {
function()
set.functions[index] = nil // Free closure for garbage collection
}
set.functions = set.functions[:index]
return nil
}
于是就可以这样使用了:
ints := NewUndoableIntSet()
for _, i := range []int{1, 3, 5, 7} {
ints.Add(i)
fmt.Println(ints)
}
for _, i := range []int{1, 2, 3, 4, 5, 6, 7} {
fmt.Println(i, ints.Contains(i), " ")
ints.Delete(i)
fmt.Println(ints)
}
fmt.Println()
for {
if err := ints.Undo(); err != nil {
break
}
fmt.Println(ints)
}
但是,需要注意的是,我们用了一个新的 UndoableIntSet 几乎重写了所有的 IntSet 和 “写” 相关的方法,这样就可以把操作记录下来,然后 Undo 了。
但是,可能别的类也需要Undo的功能,我是不是要重写所有的需要这个功能的类啊?这样的代码类似,就是因为数据容器不一样,我就要去重写它们,这太二了。
我们能不能利用前面学到的泛型编程、函数式编程、IoC等范式来把这个事干得好一些呢?当然是可以的。
如下所示:
-
我们先声明一个
Undo[]的函数数组(其实是一个栈); -
并实现一个通用
Add()。其需要一个函数指针,并把这个函数指针存放到Undo[]函数数组中。 -
在
Undo()的函数中,我们会遍历Undo[]函数数组,并执行之,执行完后就弹栈。
type Undo []func()
func (undo *Undo) Add(function func()) {
*undo = append(*undo, function)
}
func (undo *Undo) Undo() error {
functions := *undo
if len(functions) == 0 {
return errors.New("No functions to undo")
}
index := len(functions) - 1
if function := functions[index]; function != nil {
function()
functions[index] = nil // Free closure for garbage collection
}
*undo = functions[:index]
return nil
}
那么我们的 IntSet 就可以改写成如下的形式:
type IntSet struct {
data map[int]bool
undo Undo
}
func NewIntSet() IntSet {
return IntSet{data: make(map[int]bool)}
}
然后在其中的 Add 和 Delete中实现 Undo 操作。
Add操作时加入Delete操作的 Undo。Delete操作时加入Add操作的 Undo。
func (set *IntSet) Add(x int) {
if !set.Contains(x) {
set.data[x] = true
set.undo.Add(func() { set.Delete(x) })
} else {
set.undo.Add(nil)
}
}
func (set *IntSet) Delete(x int) {
if set.Contains(x) {
delete(set.data, x)
set.undo.Add(func() { set.Add(x) })
} else {
set.undo.Add(nil)
}
}
func (set *IntSet) Undo() error {
return set.undo.Undo()
}
func (set *IntSet) Contains(x int) bool {
return set.data[x]
}
我们再次看到,Go语言的Undo接口把Undo的流程给抽象出来,而要怎么Undo的事交给了业务代码来维护(通过注册一个Undo的方法)。这样在Undo的时候,就可以回调这个方法来做与业务相关的Undo操作了。
小结
这是不是和最一开始的C++的泛型编程很像?也和map、reduce、filter这样的只关心控制流程,不关心业务逻辑的做法很像?而且,一开始用一个UndoableIntSet来包装IntSet类,到反过来在IntSet里依赖Undo类,这就是控制反转IoC。
以下是《编程范式游记》系列文章的目录,方便你了解这一系列内容的全貌。
精选留言
2018-02-06 10:27:41
2020-11-04 22:21:38
文章分了两部分,一部分先简单说了 Golang 的委托用法。简单来说,就是讲一个 structA 嵌套到另外一个 structB 中,structB 会自动继承 structA 的字段。其后,通过一个更加复杂的例子说明委托的用法。(作为一个 Java 程序员,Golang 为 struct 增加方法,和定义接口的方法让人印象深刻)
另一部分,作者举了一个更加复杂的例子说明 Go 中委托和接口多态是如何实现一个数据容器的 Undo 实现的。为了说明这部分,作者通过以下步骤一说说进阶说明:
1、最简单的一个 IntSet,并定义了 Add ,Delete 方法;
2、通过一个委托的方法,将 IntSet 委托给一个新的 struct,新 struct 再重写一次 Add,Delete 方法以记录步骤(保存Undo函数对象),完成 Undo 功能;
3、最后作者希望可以进一步改写,编写一个 Undo 栈,委托给 IntSet ,并在 IntSet 编写 Add,Delete 的方法中就完成 Undo 函数对象的保存。这也是一个实现方法。
2020-11-11 19:43:32
2019-02-26 22:18:25
业务与控制分离,控制就可以复用。
把变化频率不同的事物分开。
2019-05-29 11:46:34
2019-02-06 11:47:01
2021-03-05 13:15:18
2020-09-15 16:27:32
2018-02-06 10:34:13
这块要sort吗? 能否直接for (i=0;i<len)print ints[i]
2018-02-06 19:04:10
2018-02-06 07:22:03
2023-09-15 08:49:55
package main
import (
"errors"
"fmt"
"sort"
"strings"
)
func main() {
ints := NewIntSet()
for _, i := range []int{1, 3, 5} {
ints.Add(i)
fmt.Println("after add:", ints.String())
}
for _, i := range []int{1, 2, 3, 4, 5} {
fmt.Println("want delete:", i, ints.Contains(i), " ")
ints.Delete(i)
fmt.Println("after delete:", ints.String())
}
fmt.Println("------- undo result ---------")
for {
if err := ints.Undo(); err != nil {
fmt.Println(err)
break
}
fmt.Println("after undo:", ints.String())
}
}
type IntSet struct {
data map[int]bool
undo Undo
}
func NewIntSet() IntSet {
return IntSet{data: make(map[int]bool)}
}
func (set *IntSet) Add(x int) {
if !set.Contains(x) {
set.data[x] = true
set.undo.Add(func() { set.Delete(x) })
} else {
set.undo.Add(nil)
}
}
func (set *IntSet) Delete(x int) {
if set.Contains(x) {
delete(set.data, x)
set.undo.Add(func() { set.Add(x) })
} else {
set.undo.Add(nil)
}
}
func (set *IntSet) Undo() error {
return set.undo.Undo()
}
func (set *IntSet) Contains(x int) bool {
return set.data[x]
}
func (set *IntSet) String() string {
if len(set.data) == 0 {
return "{}"
}
ints := make([]int, 0, len(set.data))
for i := range set.data {
ints = append(ints, i)
}
sort.Ints(ints)
parts := make([]string, 0, len(ints))
for _, i := range ints {
parts = append(parts, fmt.Sprint(i))
}
return "{" + strings.Join(parts, ",") + "}"
}
type Undo []func()
func (undo *Undo) Add(function func()) {
*undo = append(*undo, function)
}
func (undo *Undo) Undo() error {
functions := *undo
if len(functions) == 0 {
return errors.New("No functions to undo")
}
index := len(functions) - 1
if function := functions[index]; function != nil {
function()
functions[index] = nil // Free closure for garbage collection
}
*undo = functions[:index]
return nil
}
2021-10-20 10:10:52
2021-10-20 09:52:01
在C++里,一般是基类Undoable有一个public的实体函数Undo和一个private的纯虚函数undo,前者调用后最后;各个需要undo的子类实现这个纯虚函数。但这样就引入了强耦合(继承)。
在go里是注册一个闭包,让Undo数组回调。
2020-12-16 09:41:55
2020-04-27 23:00:26
2020-02-23 17:24:25
2018-02-08 13:21:41